Подавляющее большинство SCADA-систем реализовано на MS Windows платформах

Подавляющее большинство SCADA-систем реализовано на MS Windows платформах. Именно такие системы предлагают наиболее полные и легко наращиваемые MMI-средства. Большинство разработчиков приоритетным считают дальнейшее развитие своих SCADA-систем на платформе Windows NT. Некоторые фирмы, до сих пор поддерживающие SCADA-системы на базе операционных систем реального времени (ОСРВ), начали менять ориентацию, выбирая системы на платформе Windows NT. Все более очевидным становится применение ОСРВ, в основном, во встраиваемых системах, где они действительно хороши. Таким образом, основным полем, где сегодня разворачиваются главные события глобального рынка SCADA-систем, стала MS Windows NT на фоне все ускоряющегося сворачивания активности в области MS DOS, MS Windows 3.xx/95,98.

При выборе SCADA-систем необходимо провести анализ имеющихся в них средств сетевой поддержки. Одной из основных черт современного мира систем автоматизации является их высокая степень интеграции. В любой из них могут быть задействованы объекты управления, исполнительные механизмы, аппаратура, регистрирующая и обрабатывающая информацию, рабочие места операторов, серверы баз данных и т.д. Очевидно, что для эффективного функционирования в этой разнородной среде SCADA-система должна обеспечивать высокий уровень сетевого сервиса. Желательно, чтобы она поддерживала работу в стандартных сетевых средах (ARCNET, ETHERNET и т.д.) с использованием стандартных протоколов (NETBIOS, TCP/IP и др.), а также обеспечивала поддержку наиболее популярных сетевых стандартов из класса промышленных интерфейсов (PROFIBUS, CANBUS, LON, MODBUS и т.д.). Этим требованиям в той или иной степени удовлетворяют практически все рассматриваемые SCADA-системы, с тем только различием, что набор поддерживаемых сетевых интерфейсов, конечно же, разный.

Читать также:  Запуск программного обеспечения

При выборе SCADA-систем необходимо учитывать, имеет ли выбираемая система встроенные командные языки (VBasic-подобные языки), позволяющие генерировать адекватную реакцию на события, связанные с изменением значения переменной,
с выполнением некоторого логического условия, с нажатием комбинации клавиш, а также с выполнением некоторого фрагмента
с заданной частотой относительно всего приложения или отдельного окна.

Большое значение имеет условие независимости SCADA-системы от типа базы данных, что позволяет менять базу данных без серьезного изменения самой прикладной задачи, создавать независимые программы для анализа информации, использовать уже наработанное программное обеспечение, ориентированное на обработку данных.

Для специалиста-разработчика системы автоматизации, так же как и для специалиста-технолога, чье рабочее место создается, очень важен графический пользовательский интерфейс. Функционально графические интерфейсы SCADA-систем весьма похожи. В каждой из них существует графический объектно-ориентированный редактор с определенным набором анимационных функций. Используемая векторная графика дает возможность осуществлять широкий набор операций над выбранным объектом, а также быстро обновлять изображение на экране, используя средства анимации.

Система является открытой, если для нее определены и описаны используемые форматы данных и процедурный интерфейс, что позволяет подключить к ней «внешние», независимо разработанные компоненты. Вопрос об открытости системы является важной характеристикой SCADA-систем. Фактически открытость системы означает доступность спецификаций системных (в смысле SCADA) вызовов, реализующих тот или иной системный сервис. Это может быть и доступ к графическим функциям, функциям работы с базами данных и т.д.

Читать также:  Основные направления использования информационных компьютерных технологий в ДОУ. Возможности электронного документооборота

Современные SCADA-системы не ограничивают выбора аппаратуры нижнего уровня, так как предоставляют большой набор драйверов или серверов ввода-вывода и имеют хорошо развитые средства создания собственных программных модулей или драйверов новых устройств нижнего уровня. Сами драйверы разрабатываются с использованием стандартных языков программирования. Вопрос, однако, в том, достаточно ли только спецификаций доступа к ядру системы, поставляемых фирмой-разработчиком
в штатном комплекте (система Trace Mode), или для создания драйверов необходимы специальные пакеты (системы FactoryLink, InTouch), или же разработку драйвера нужно заказывать у фирмы-разработчика.

Многие компании занимаются разработкой драйверов, ActiveX-объектов и другого программного обеспечения для SCADA-систем. Этот факт очень важно оценивать при выборе SCADA-пакета, поскольку это расширяет область применения системы непрофессиональными программистами (нет необходимости разрабатывать программы с использованием языков С или Basic).

При оценке стоимости SCADA-систем нужно учитывать следующие факторы:

  • Стоимость программно-аппаратной платформы;
  • Стоимость системы;
  • Стоимость освоения системы;
  • Стоимость сопровождения.

Показатели этой группы критериев наиболее субъективны. Это тот самый случай, когда лучше один раз увидеть, чем семь раз услышать. К этой группе можно отнести:

  • Удобство интерфейса среды разработки – «Windows – подобный интерфейс», полнота инструментария и функций системы;
  • Качество документации – ее полнота, уровень русификации;
  • Поддержка со стороны создателей – количество инсталляций, дилерская сеть, обучение, условия обновления версий и т.д.
Читать также:  ЧТОБЫ НЕ ПРОГОРЕТЬ – НУЖНО РАССЧИТАТЬСЯ

Если предположить, что пользователь справился и с этой задачей – остановил свой выбор на конкретной SCADA-системе, то далее начинается разработка системы контроля и управления, которая включает следующие этапы:

  • Разработка архитектуры системы автоматизации в целом. На этом этапе определяется функциональное назначение каждого узла системы автоматизации;
  • Решение вопросов, связанных с возможной поддержкой распределенной архитектуры, необходимостью введения узлов
    с «горячим резервированием» и т.п.;
  • Создание прикладной системы управления для каждого узла. На этом этапе специалист в области автоматизируемых процессов наполняет узлы архитектуры алгоритмами, совокупность которых позволяет решать задачи автоматизации;
  • Приведение в соответствие параметров прикладной системы с информацией, которой обмениваются устройства нижнего уровня (например, программируемые логические контроллеры – ПЛК) с внешним миром (датчики технологических параметров, исполнительные устройства и др.);
  • Отладка созданной прикладной программы в режиме эмуляции.
Оцените статью
Информационный блог
Добавить комментарий